Effective Intrusion Detection System using Data Mining Technique
نویسندگان
چکیده
Network Security has become the key foundation with the tremendous increase in usage of network-based services and information sharing on networks. Intrusion poses a serious risk to the network security and compromise integrity, confidentiality & availability of the computer and network resources. Human classification of network audit data is expensive, time consuming and a tedious job. Intrusion Detection System (IDS) is one of the looms to detect attacks and anomalies in the network. Data mining technique has been widely applied in the network intrusion detection system by extracting useful knowledge from large number of network data. In this paper a hybrid model is proposed that integrates Anomaly based Intrusion detection technique with Signature based Intrusion detection technique is divided into two stages. In first stage, the signature based IDS SNORT is used to generate alerts for anomaly data. In second stage, data mining techniques “k-means + CART” is used to cascade k-means clustering and CART (Classification and Regression Trees) for classifying normal and abnormal activities. The hybrid IDS model is evaluated using KDD Cup Dataset. The proposed assemblage is introduced to maximize the effectiveness in identifying attacks and achieve high accuracy rate as well as low false alarm rate. KeywordsAnomaly Detection, Intrusion detection, data mining, k-means, CART, SNORT
منابع مشابه
Network Anomalies Detection Using Statistical Technique : A Chi- Square approach
Intrusion Detection System is used to detect suspicious activities is one form of defense. However, the sheer size of the network logs makes human log analysis intractable. Furthermore, traditional intrusion detection methods based on pattern matching techniques cannot cope with the need for faster speed to manually update those patterns. Anomaly detection is used as a part of the intrusion det...
متن کاملIntrusion Detection System Using Data Mining Technique
This paper analysis and criticizes the way of using, functioning the intrusion detection system in data mining. Understanding the techniques. data mining approach such as intrusion detection system using association datasets where as in event correlation data mining method we will maintain. traffic analysis and anomaly intrusion detection systems are needed. log data by using a knowledge discov...
متن کاملSecuring Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining
Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...
متن کاملData Mining Techniques For Intrusion Detection System
Reddy et al (20) also presented a survey of various data mining techniques for intrusion detection system. Subramanian et al (21) presented the performance. Developing a Hybrid Intrusion Detection System Using Data Mining for A data mining technique called common path mining is used to automatically. The proposed hybrid technique combines data mining approaches like K Novel intrusion detection ...
متن کاملDesigning an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015